Machine Learning Model For Stunting Prediction
DOI:
https://doi.org/10.46799/jhs.v4i9.1073Keywords:
Machine Learning, Stunting, Detection, PredictionAbstract
This study aims to find the best Supervised Machine Learning (SML) model for stunting prediction. This research was conducted using an experimental approach using 192 infant data with a composition of 183 normal infant data and 9 stunted infant data using a custom dataset. The conclusion obtained from this study can be concluded that the combination of the Random Forest classification algorithm with Support Vector Machine Weighting and the Genetic Algorithm Feature Selection has the best performance. The parameters with the best performance are: The training and testing data distribution is 90% of the training data and 10% of the testing data. The number of trees in the random forest algorithm is 100, and the Gain Ratio criterion and max_depth is 10. In the Genetic Algorithm, the best parameters are: The Roulette Wheel selection method, the population is 20, the mutation value is 0.03, and the crossover value is 0.9. The validation method uses k-fold cross validation with a value of k = 10. Another conclusion is that there are 44 supporting factors for stunting, which, if we take a ranking of 10 in order of magnitude from largest to smallest, the supporting factors for stunting are 1.Baby's weight at birth. 2.Babys Height at Birth. 3.Number of meal per day. 4.Breast Milk. 5.Diarrhe times per 3 month. 6.Child development examination during covid by Health Worker at home. 7.Mother's age at birth. 8.Mother height at birth. 9.Number of sibling. 10.Age when the first food was given. This research has the disadvantage of no test on other datasets. So researchers do not know the reliability of findings is on different datasets
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sutarmi Sutarmi, Warijan Warijan, Tavip Indrayana, Dwi P. Putro b, Indra Gunawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under aCreative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA).�that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.